
Week 15 - Monday

 What did we talk about last time?
 Finished tries
 Substring searching

 Roughly half short answer questions
 Roughly half programming
 Designed to take 90 minutes (50% longer than the previous

exams)
 But, you will have the full 120 minute time period

 The focus will be on the second half of the semester
 Look for things that were not covered on previous exams
 Place: Point 113
 Time: 10:15 - 12:15 p.m., Friday, 12/13/2024

 Programming model
 Java
 OOP
 Interfaces
 Exceptions

 Java Collections Framework

 Big Oh Notation
 Formal definition: f(n) is O(g(n)) if and only if
▪ f(n) ≤ c∙g(n) for all n > N
▪ for some positive real numbers c and N

 Worst-case, asymptotic, upper bound of running time
 Ignore lower-order terms and constants

 Big Omega and Big Theta
 Abstract Data Types
 Array-backed list

 Stacks
 FILO data structure
 Operations: push, pop, top, empty
 Dynamic array implementation

 Queues
 FIFO data structure
 Operations: enqueue, dequeue, front, empty
 Circular (dynamic) array implementation

 JCF implementations: Deque<T> interface
 ArrayDeque<T>
 LinkedList<T>

 Linked lists
 Performance issues
 Single vs. double
 Insert, delete, find times

 Special lists
 Circular
 Skip
 Self-organizing

 Linked list implementation of stacks
 Linked list implementation of queues

 What’s the running time of the following code?

int count = 0;
for (int i = 1; i <= n; ++i) {

for (int j = 1; j <= n; ++j) {
for (int k = 1; k <= n; k += j) {

count++;
}

}
}

public class ArrayList {
private String[] array = new String[10];
private int size = 0;
…

}

Complete the following a method to insert a value in an
arbitrary index in the list. You may have to resize the list if it
doesn't have enough space.

public void insert(String value, int index)

public class Tree {
private static class Node
{
public String key;
public Node left;
public Node right;

}

private Node root = null;

…
}

public class List {
private static class
Node {

public String value;
public Node next;

}

private Node head =
null;

…
}

 Write a method in the List class that will remove every other
node (the nodes with even indexes) from a linked list

public void removeAlternateNodes()

 Write a method that takes a binary search tree and returns an ordered linked list
 Write the method in the Tree class
 Assume you are given a linked list with an add()method that can add to the front of the list

 Hint: Use a reverse inorder traversal

Recursive method:
private static void toList(List list, Node node)

Proxy method:
public List toList() {

List list = new List();
toList(list, root);
return list;

}

 Review up to Exam 2
 Recursion
 Binary trees
 2-3 and red-black trees
 Hash tables
 Graph basics
 Review Chapters 3 and 4

 Bring a question to class Wednesday!
 Any question about any material in the course

 Fill out course evaluations!
 Keep working on Project 4
 Due Friday

 Study for final exam
 Friday, 12/13/2024 from 10:15 a.m. - 12:15 p.m.

	COMP 2100
	Last time
	Questions?
	Project 4
	Review
	Final Exam Format
	Review up to Exam 1
	Week 1
	Week 2
	Week 3
	Week 4
	Sample Problems
	Running time
	Array list class
	BST and linked list classes
	Remove alternate nodes
	Tree to Linked List
	Upcoming
	Next time…
	Reminders

